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An initial-value problem is considered for the oceanographically relevant case of slow 
flow over obstacles of small height and horizontal scale of order the fluid depth or 
larger. Previous work on starting flow over obstacles whose contours are closed 
(Johnson 1984) is extended to flow forced by a sourc-ink pair to cross a step change 
in depth bounded by a vertical sidewall. Bottom contours thus end abruptly and the 
near-periodic solutions of the earlier work are no longer possible. The relevant 
timescale for the motion is again the topographic vortex-stretching time h/20h0,  
where h is the fluid depth, 51 the background rotation rate and h,, the step height. 
This time is taken to be long compared with the inertial period but short compared 
with the advection time. It is shown that if shallow water lies to the right (looking 
away from the wall) a wavefront moves outwards exponentially fast leaving behind 
a flow equivalent to that obtained by replacing the step by a rigid wall. If shallow 
water lies to the left the wavefront approaches the wall, forming at the wall-step 
junction an unsteady, exponentially thinning, singular region that transports the 
whole flux. The relevance of these solutions to experiments and steady solutions for 
free-surface and two-layer flows in Davey, Gill, Johnson & Linden (1984, 1985) is 
discussed. 

1. Introduction 
The problem of starting flow over an obstacle moving transversely in a rapidly 

rotating fluid has been considered recently (Johnson 1984, hereinafter referred to 
as I) for the the limit where the inertial period is short compared with the topographic 
vortex-stretching time, which is in turn short compared with the advection time. 
Solutions in I for flow over axisymmetric bodies set impulsively in motion show 
topographic waves, of the form discussed by Rhines (1969), cycling clockwise round 
closed isobaths. In the absence of dissipation the forces on the obstacle and the 
streamline patterns are non-decaying and almost periodic. It is the purpose of the 
present work to apply similar analysis to flow over a step bounded by a sidewall. In 
this geometry isobaths are not closed but end abruptly. Unidirectional topographic 
waves, termed double Kelvin waves in Longuet-Higgins (1968), propagating towards 
the wall cannot be reflected and so a periodic motion is not possible. 

This problem is closely related to the evolution of coastal currents forced initially 
to cross bottom contours. Mysak (1969) discusses the double Kelvin wave generated 
when a wind-stress-forced homogeneous flow crosses an infinitely long step, applying 
the results to currents crossing the Mendocino escarpment, and Willmott (1984) 
discusses the modification of these solutions in a Cwo-layer fluid. The effect of the 
coastal boundary, neglected in these studies, is retained in Davey, Gill, Johnson & 
Linden (1984, 1985) who examine experimentally and theoretically the adjustment 
of two-layer and free-surface currents crossing a step bounded by a sidewall. The 



500 E.  R .  Johnson 

experimental results show flow from shallow into deep water turning to the left to 
run along the step before crossing, and flow from deep to shallow turning to the right. 
These are the directions of propagation of topographic waves above the step 
(Longuet-Higgins 1968 ; Rhines 1977) and closed-form, dispersive-wave solutions are 
given for the time development of these flows in the absence of the sidewall. Analytic 
solutions for the asymptotically steady flow in the presence of a sidewall are obtained 
by arguing that topographic waves carry information unidirectionally even when a 
sidewall is present. This leads to solutions in which there is no flux across the step 
at finite non-zero distances from the wall. When topographic waves approach the wall 
the entire flux crosses in a singular region at the origin. When topographic waves 
travel away from the wall the fluid crosses in an unsteady region at infinity. By 
presenting a closed-form solution for the initial-value problem, the present analysis 
verifies this argument for the special case of flows bounded by a rigid lid. 

Section 2 poses a simple initial-value problem for flow driven by a source-sink pair 
on the sidewall of a semi-infinite domain. In  the present limit, the flow set up on the 
inertial period timescale is irrotational, depth independent and has Coriolis force 
exactly balanced by pressure gradient. It can thus be termed geostrophic. This flow 
is not steady over the longer, topographic vortex-stretching timescale as streamlines 
cut isobaths. The flow evolves to a steady state almost everywhere over this longer 
scale. Since vortex stretching causes flow from deep to shallow to turn left and flow 
from shallow to deep to turn right, the evolution and final state are determined solely 
by the geometry of the flow, i.e. whether shallow water lies to the right or left (looking 
away from the wall), and are independent of flow direction. For flow driven across 
a vertical step, solutions are symmetric about the step and attention can be confined 
to a quadrant. In $ 3  the quadrant is mapped conformally to an infinite strip and 
topographic wave solutions found for the unforced problem. These free modes show 
that waves approaching the wall decelerate and decrease in wavelength whereas 
waves leaving the wall accelerate and increase in wavelength. The waves are 
unidirectional, propagating with shallow water to their right even in the presence of 
the wall. In the forced problem this implies that the wall boundary condition 
propagates to infinity if shallow water lies to the right and the infinity boundary 
condition propagates to the wall if shallow water lies to the left. The simple 
time-independent problem thus obtained is solved in $4 for the asymptotic steady 
states. In  both cases there is no flux across the step at finite non-zero distances from 
the wall. The entire flux crosses at infinity in the former case and in a singular region 
at the wall-step junction in the latter. The full solution to the initial-value problem 
is presented in $ 5 ,  where it is shown that a wavefront matching initial to final 
conditions advances along the step exponentially rapidly. When shallow water lies 
to the left a singular region develops in the neighbourhood of the origin. The thickness 
of the region decreases and the velocities in the region increase exponentially with 
time, so that the flux transported remains constant. A brief discussion of neglected 
effects and the modifications caused by a free surface is given in $6. 

2. Governing equations 
Consider a horizontally semi-infinite layer of inviscid, incompressible fluid of 

average depth h and constant density p,  rotating as a rigid body with constant 
angular frequency Q about a vertical axis Oz*. Take Cartesian axes Ox*y*z* so the 
vertical sidewall of the fluid is given by y* = 0, the upper rigid boundary by z* = h 
and the lower boundary by z* = h,f(z*/Z) for y* > 0. Suppose that at t* = 0 a vertical 
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line source-sink pair of volume flux per unit length 8nU1, is switched on, at x* = + I ,  
such that the Rossby number Ro = U/2521 is small. Then, as noted in I, topographic 
compression of vortex filaments generates vorticity of order 252h0/h and so introduces 
a topographic vortex-stretching timescale h/2Qh, in addition to the advection time 
1/U and the inertial period ( 2 Q - l .  Following I, introduce the vortex-stretching time 
t = 2Qh0 t*/h and consider the limit Ro 4 ho/h 6 1, to obtain the non-dimensional 
geostrophic relations 

(2 .1)  u = -py ,  v = p,, P ,  = 0, 

and field equation, V2Pt + acp,n = 0, (2 .2)  

where a(p,f) = p ,  fy - f ,p , ,  relating vorticity generation to topographic compression 
of vortex lines. The boundary conditions on the flow are 

(2.3) 

vp+o (z2+y2+00, t > O ) ,  (2.4) 

P = sgn (1x1- 1 )  (y = 0, t > O ) ,  

where, for definiteness, the source has been taken to be at z = 1 and the sink at 
x = - 1 .  As (2.2) is linear in p ,  reversing the flow direction leaves the streamline 
patterns and flow evolution unaltered. The initial condition required by (2.2) is 
obtained by noting that the flow set up on the shorter, inertial-period, timescale is 
unaffected by topography and hence irrotational. Thus 

v2p = 0 (y 2 0, t = 0) .  (2 .5)  

These equations take a particularly simple form for a step change in depth, i.e. 
f = y sgnz, where y = k 1 depending on whether shallow water lies to the left or 
right looking away from the bounding wall. Equation (2.2) can then be combined with 
(2 .5)  to give 

(2.6) 

The motion remains irrotational away from the step. Integrating (2.2) by parts across 
the step from --E to E with 0 < E 4 1 gives 

v2p = 0 (z * 0, y 2 0, t 2 0). 

[Pxt-.fPy1E,+I. --E (P,,,+fP,,) dz = 0. 

Since f is bounded, p ,  is bounded and so p is continuous at the step. Furthermore, 
as the integrand is bounded, the integral vanishes as e+O. The matching conditions 
across the step are thus 

(2.7a, b)  

where [ 3 denotes the jump in the enclosed quantity in passing from z = 0- to z = O+. 
The problem may be further simplified by letting p = q(Iz(, y, t ) ,  where 7 is defined 
solely in the first quadrant. Then 

(2.8) 

b] = 0, b x , ] - 2 y p ,  = 0 (z = 0, y 2 0, t 2 O ) ,  

v2q = 0 (z 2 0, y 2 0, t 2 O ) ,  

7 = sgn (z- 1) (y = 0,  t 2 0) ,  

vq+o (z2+y2+00, t 2 O ) ,  

qXt-YTy = 0 (z = 0, y 2 0, t 2 01, 

7,= 0 (z= 0, y 2 0, t = O ) ,  

(2.9) 

(2.10) 

(2.11) 

(2.12) 

where the required initial value of 7, at the step follows from noting that, subject 
to the condition (2.3), the initial irrotational flow given by (2.5) is even in 2. 
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3. Freemodes 
Before considering the forced problem, it is informative to examine free modes of 

the system. Consider (2.8)-(2.12) with (2.9) replaced by the homogeneous condition 

'I = 0 (z 2 0, y = 0, t > 0). (3.1) 

[+it9 = log (z+iy), (3.2) 

Reduce this system to a more standard form by the conformal mapping 

where 0 is the usual polar angle and 6 = logr for radius T = (x2+y2) f .  The first 
quadrant maps to the semi-infhite strip - 00 < 6 < CO, 0 < 8 < i x .  Equations (2.8) 
and (2.10) are invariant, and (3.1) and (2.11) become 

= o (e = 0 1 ,  'Iet+y'15 = o (e = ; x )  (t > 0). (3.3a, b)  

The transformed system admits propagating-wave solutions of the form 

7 = Re {A sinh k8 exp (ikE-iywt)}, 

provided that w and k satisfy the dispersion relation 

w = tanhixk. (3.4) 

The phase and group speeds are 

1 
k 

cp = - tanh ink, cg = +x sech2 ixk. (3.5a, b )  

The waves are unidirectional, travelling at all wavelengths with shallow water to their 
right and so moving towards the wall for y = - 1 and away for y = 1. In  the 
transformed plane, long waves travel fastest with group and phase speeds both in. 
Both speeds decrease monotonically to zero with decreasing wavelength. In  the 
original coordinates the local wavenumber of a disturbance of a given frequency 
increases with decreasing distance from the origin. Defining the local radial wave- 
number kl as the radial derivative of the phase gives 

k 
k l  = -. 

T 

The wavelength and speed decrease to zero for waves near the origin and become 
infinite for waves far away. 

This behaviour contrasts with the wavelike solutions possible above an infinitely 
long step in the absence of a sidewall (Longuet-Higgins 1968; Rhines 1969, 1977; 
LeBlond & Mysak 1978 chapter 4). System (2.8), (2.10), (2.11) admits solutions of 
the form 

'I= Re{Aexp(iky-iywt-~k~z)}, 

provided w = sgn k, giving phase and group speeds 

(3.7 a, b)  

where 6(k) is the Dirac delta function. The waves are unidirectional with phase speed 
increasing indefinitely with increasing wavelength and group velocity non-zero solely 
for infinitely long waves, for which it is infinite. An initial distribution of 'I drives 
a standing-wave pattern with period 2x, transporting no energy. 
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FIQURE 1. Streamline patterns for flow driven over a step change in depth by a source-sink pair 
situated on a bounding wall. The step is at z = 0 and the source and sink at x = f 1 on y = 0. In 
this and the following figure the source is taken to be at x = 1 and the sink at x = - 1. Reversing 
the flow direction, however, simply reverses the direction of the arrow heads: the patterns and 
evolution are unaltered. The streamline interval is 0.25. (a) The initial, irrotational flow set up on 
the inertial timescale. ( b )  The final state when the deeper fluid lies to the left, looking away from 

the wall (i.e. y = 1). (c) The h a 1  state when the deeper fluid lies to the right (i.e. y = - 1). In each 
c m  diagram (i) gives the solution in the (6, @-strip (see text) and (ii) the solution in the original 
coordinates. The scale for each figure is given by (a). 

4. The initial-value problem - the long-time solution 
The initial-value problem may be solved similarly. However, the considerations of 

the previous section enable the long-time solution to be obtained without solving the 
full-time-dependent problem. The flow set up on the 
dimensional irrotational flow from a source-sink pair, 

y arctan - 7 = 1+-  arctan-- 
Ic 2 {  x + l  x- y l  1 

inertial timescale is two- 

(t = 0). (4.1) 

Figure 1 (a) gives the streamlines for this in the (6, 8)-strip and (z, y)-half-plane. Since 
information at all wavelengths propagates with shallow water on the right, the value 
7 = - 1 propagates along the 8 = i ~ c  boundary from the right for y = 1 and the value 
7 = 1 propagates from the left for y = - 1.  Hence the large-time boundary condition 

(4.2) 
is 

7 = - y  (8 =in, b o o ) .  
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The large-time solutions are thus 

r]+ I -- a rc t anY+arc t an -  } ( y =  1,t+co), 

’ arctan- r] + 1 + - 2 arctan -- arctan - - 

x 2 {  2-1 x+ 1 

x 2 {  2 x+l 2-1 ”> Y 

(4.34 

(4.3 b)  

The flows are symmetric about x = 0 and consist, in the first quadrant, of a solid wall 
at x = 0 and, paired with the original source at  x = 1, a sink of equal strength at the 
origin (for y = - 1) or infinity (for y = 1). Figure 1 (b, c) give the large-time flow 
patterns in the transformed strip, and the corresponding patterns in the original co- 
ordinates. In  both cases there is no flow across x = 0 for y > 0, consistent with the 
requirement that steady geostrophic flow cannot cross bottom contours. The step 
acts as a solid boundary even though i t  occupies a vanishingly small fraction of the 
fluid depth. The height of the step affects solely the adjustment time and not the form 
of the final state. For y = - 1 the fluid travels from the source to the sink via an 
infinitesimal singular region at the origin. For y = 1 the fluid crosses the step in an 
unsteady region arbitrarily far from the origin. 

5. The initial-value problem - the full solution 
A more complete description of the flow can be obtained by considering the long-time 

behaviour of the full solution. The system satisfied by r ]  consists of the homogeneous 
system of 93, with (3.1) replaced by 

r] = sgn6 (0 = 0, t 2 0), (5.1) 

and the initial condition 70 = 0 (0 = in, t = 0). (5-2) 
Introduce the Fourier integral representation 

r m  
7 = -?+in J f(k,  0,  t )  exp (ikt) dk ,  (5.3) 

-m 

with the exact path of the integral to be determined. Then f satisfies 

f@8-k2$ = 0 (0 < e < in), (5.4) 
2 

$=-  ik ( e=o) ,  (5.5) 

~&~+ikyf  = 0 ( t  > 0 ) ,  $* = 0 ( t  = 0) (0 = in). (5.6a, b )  

The solution of (5.4) and (5.5) can be written 

2 cosh k0 
ik 

f =  + A ( t )  sinhk0 

provided, from (5.6a), A(t)  satisfies 

-2Y A t + +  tanhink A = - 
k ’  (5.7) 

The complementary function for (5.7) is a negative exponential in t for k near zero 
provided Im k < 0 for y = 1 and Im k > 0 for y = - 1. Then (5.7) gives the large-time 
particular solution 

1 Sm sinh k($-0) 
r ] O ( f j ,  ’) = -Y+z --oo k sinh$k exp (ikg) dk, 
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x -2  0 2 4  - 2  - 1  0 1 2 -2  - 1  0 1 2 
(4 (iii) 

-Eg 
-2  - 1  0 1 2 

(iii) 

FIQTJRE 2. Streamline patterns at intermediate stages of the flow in figure 1. In both caws (i) gives 
the pattern in the ([,@-strip, (ii) the pattern in the original coordinates for y = 1 and (iii) the 
pattern in the original coordinates for y = - 1. (a)  t = 2; ( b )  t = 10. The scales are as in figure 1. 

with the inversion contour passing above the pole at k = 0 for y = - 1 and below for 
y = 1. In terms of integrals defined for real k, 

-2710 2 sinhk($-@ 
sin k t  dk. 

?lo(E, 4 = ff +i Jo k sinh@k 

This is the steady-state solution (4.3). The intermediate-time solution follows from 
(5.7) with initial condition (5.6b) as 

The form of (5.9) shows the solution for y = - 1 to follow from that for y = 1 by 
running time backwards, i.e. replacing t by - t .  Alternatively, the solutions may be 
related by reflecting about E = 0 and changing the sign of q.  Streamline patterns for 
y = & 1 at a given time are thus related in the original coordinates by inversion in 
the unit circle. This can be seen clearly from the fast Fourier transform (FFT) 
inversion of (5.9) displayed in figure 2 at times t = 2, 10 for y = 1 in the (6, @-strip 
and the corresponding solutions for y = & 1 in the original coordinates. The infinite- 
time solutions of figure 1 are also related through inversion in the unit circle. 

The behaviour of the solution is most clearly illustrated by considering its 
asymptotic form, above the depth discontinuity. It is useful to consider first the flow 
velocity perpendicular to the step, since this must approach zero for the geostrophic 
flow to become steady. It is given by V(y) = -qt/ (z = 0) and has the initial value 
U(y) = -4/x(1 +y2), decaying algebraically and monotonically from a maximum 
speed of 2/n at the wall. At intermediate times it is simpler to consider 
-yV(y) = qr(B = in) = V(5) (say) where, from (5.9), 

V(5)  = Im sechink exp {iE(k) t }  dk, = -m 
(5.10) 
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FIGURE 3. The scaled cross-step velocity, V(5)  = -yU(y), in the stretched coordinate system 
6 = logy. (i)Theinitialprofile(t = 0 ) ;  (ii) thedispersedwavetrain ( t  = 100) .  Theenhanced amplitude 
in the neighbourhood of the wavefront at 6 = int is clearly visible. 

FIGURE 4. Stream-function values above the depth discontinuity in the stretched coordinate system. 
( i )  The initial profile ( t  = 0; ( i i )  the profile at t = 100 for y = 1, i.e. waves travelling outwards; (iii) 
the profile at t = 100 for y = - 1 ,  i.e. waves travelling inwards. 

for E(k)  = kt/t- tanhixk. A t  y = 1, i.e. E = 0, (5.10) can be evaluated directly to give 
U(1) = - V(0)  = - ( 2 / x ) J 0 ( t ) ,  where J,  is the zero-order Bessel function of the first 
kind. The velocity oscillates with zero mean, frequency approaching x ,  and amplitude 
decaying as tf. For other values of 6 the integral can be estimated at  large time by 
the method of stationary phase. For I 61, t+ co such that i$/t remains constant, i.e. 
points moving outward (for y = 1) with positions y = yo exp (ct) or inward (for 
y = - 1) with positions y = yo exp ( - ct), the dominant contribution to the integrand 
occurs for those wavenumbers where E’(k) vanishes, i.e. for LJyt = cg(k), as expected. 
Outside the region 0 < E/yt < in, the disturbance decays exponentially with in- 
creasing 16 I and as t-l with increasing time. In the original coordinate system this 
causes the disturbance to be confined in exp (-@) < y < 1 for y = - 1 and to 
spread exponentially in 1 < y < exp ( i x t )  for y = 1. The usual stationary-phase 
formula yields, for y = 1, 

(5.11) 

where k, = ( 2 / x )  arcsech [ (2E/xt)t] .  Except in the neighbourhood of the wavefront at 
6 = ixyt ,  V decays as t t .  The singularity at f = ixyt corresponds to the maximum 
in cg for the long waves forming the front. Retaining third-order terms in the 
expansion of E(k)  in this neighbourhood yields a standard matching in terms of the 
Airy function, for y = 1, 

(5.12) 

In  a widening region of thickness ti about the front, the disturbance decays as t-f. 
This slower decay manifests itself in an enhanced amplitude near the front, as can 
be seen from the FFT inversion of (5.10) in figure 3, showing the initial distribution 
and that at t = 100 for y = 1 (that for y = - 1 following by reflection about f = 0). 
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Applying the same arguments to the stream function above the step, and including 
the effect of the pole at the origin, gives, to order t-' for y = 1, 

(5.13) 
4 

-1  +-(nt)-tk,'sin 
x 

sgn (f-int) (otherwise). 

The behaviour at the wavefront follows from integrating V as 

(5.14) q - - 1 + 2  Ai(s)ds, X = - - t ( [ - i n t ) .  

Asymptotic forms for this integral in Abramowitz & Stegun (1965, chapter 10) show 
that 7 approaches 1 exponentially for 6 > ixt and matches smoothly to the wavetrain 
for [ < int. Figure 4, from FFT inversion of (5.9), shows stream-function values along 
the step at times t = 0 and t = 100 for y = f 1, the solution for y = - 1 following by 
reflecting that for y = 1 about [ = 0 and 7 = 0. These patterns correspond to  the 
free-surface or interface displacements of Davey et al. (1984, 1985). The advancing 
wavefront is clearly visible, leaving behind a wavetrain oscillating about the h a 1  7 
value with amplitude decaying as t-4. Each excursion corresponds to an eddy 
forming over the step, at unit distance from the wall, and travelling outwards (y = 1) 
or inwards (y = - l), decaying in amplitude. These eddies may be seen in the original 
coordinates in figure 2. For y = - 1 the long-time value 7 = 1 propagates towards 
the wall so that the transition occurs near y = exp ( -int). Conservation of flux then 
implies that the velocity near the wall grows exponentially to form the singular 
source-sink region at the origin in the long-time solution of $4. For y = 1 the long-time 
value 7 = - 1 propagates to infinity with the transition occurring near exp (int). In  
both caaes the mean of the motion rapidly becomes that of the long-time flow but 
the oscillatory tail behind the wavefront means that there is only a slow decay to 
the ha1 state. 

2 X I, n 

6. Discussion 
Analytic solutions have been presented for the temporal development of flow forced 

across a depth discontinuity by a source-sink pair on a vertical sidewall of a rapidly 
rotating container. An initial, unsteady, irrotational but geostrophic flow, set up in 
a time of order the inertial period, evolves almost everywhere to a steady state over 
the timescale relevant for topographic vortex stretching. On this scale a wavefront 
travels outwards with exponentially increasing displacement, or inwards with 
exponentially decreasing displacement, the direction of propagation being such that 
shallow water lies to the right. Ahead of the wavefront the flow deviates little from 
the initial conditions and behind i t  oscillates with small amplitude about its final 
state. Depending on the direction of propagation of the front, the flux forced by the 
source-sink pair crosses the step in an unsteady region a t  infinity or in an increasingly 
narrow, singular region in the neighbourhood of the wall. 

In  this singular region and above the step, higher-order terms, negligible in the 
remainder of the flow field, are important. Which neglected effect first becomes 
important depends on the relative sizes of the relevant small parameters (see I). 
Advective effects are measured by S-' = hRo/ho, the inverse of the Hide (1961) 
parameter, giving the ratio of the time taken for the wavefront to reach the wall to 
that for a particle to travel from the source to the step. If S-' is the largest of the 

17 PLY 160 
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neglected small parameters then the governing dynamics above the step, near the 
wall, and at  large time are those for the nonlinear conservation of potential vorticity. 
The present steady solutions obey these almost everywhere and so i t  is likely that only 
in the singular region will the symmetry of the flow be broken and generation of 
relative vorticity by vortex stretching be important. This is not a steady process and 
the continuing narrowing of these regions means that eventually horizontal diffusion, 
measured by an Ekman number E = v/2QZ2, is important. The wall-step singularity 
appears simpler than the closely related problem of nonlinear critical layers as the 
outer solution is determined entirely without knowledge of the inner region. This may 
not be so along the step and the previously derived jump conditions may be invalid 
at large time. 

If diffusion is the largest of the neglected effects, or after a period of advective 
adjustment, ,!& and layers ensure continuity of the solution above the step and a 
modified ,!& layer (Greenspan 1968, chapter 2) carries the flux across the step in the 
singular region. Viscous dissipation destroys vorticity generated by vortex stretching 
and flow patterns retain their symmetry unless the sidwall boundary separates. 
Ekman pumping effects, measured by ,u = (v/Qh$, the ratio of Ekman-layer 
thickness to step height, can be easily incorporated even at  zero order. The single 
modification of (2.8) to (2.12) is to replace (2.1 1 )  by 

qzt+pqz-yq1/ = 0 (z = 0, y 2 0, t 2 01, (6.1) 

causing topographic waves to decay, irrespective of wavelength, on the Ekman spin-up 
time. The long-time solution varies continuously from the pattern in figure 1 (a) to 
those in figure 1 (b, c) as ,u decreases from infinity, when the flow is irrotational 
everywhere and the step is irrelevant, to zero when the Ekman layer is vanishingly 
thin. 

Greenspan (1968, chapter 2) reports experiment and theory for inertial waves, 
depth-independent topographic waves and geostrophic modes in rapidly rotating 
containers with order-unity depth changes. His results make it likely that the flow 
patterns presented here will closely approximate those above a step whose height is 
a substantial fraction of the fluid depth. The vortex-stretching time in this case is 
of order the inertial period and so only a few rotation periods would be needed to 
set up the asymptotic state. 

The source-sink flow presented here is a simple analytic and experimental method 
for forcing a cross-step flow. In oceanographic applications the cross-step flow is more 
likely to be forced by wind stresses, modelled in the laboratory by a differentially 
rotated lid. The present method of solution applies directly. Once a particular solution 
ignoring topography is subtracted, the remainder of the solution is forced by an 
inhomogeneity above the step. 

The sole effect in the present limit of allowing the surface to be free or considering 
a two-layer fluid with a rigid lid and an inert layer (Rhines 1977; Willmott 1984 for 
the unbounded case) is to  replace the field equation (2.8) by 

V2q-aa-2q = 0, (6.2) 

where a = (gh)i/QZ is a non-dimensional Rossby radius and g is gravitational 
acceleration for a free surface or reduced gravity in the two-layer flow. The conformal- 
mapping technique is then inapplicable. However, by analogy with the effect of finite 
Rossby radius on waves in the absence of a bounding wall, it  appears that the free 
surface simply introduces a maximum propagation velocity for long waves in the 
original coordinate system. This causes a slower evolution at large distances but does 
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not affect the details of the singular region. It is under this assumption that the 
solutions of Davey et al. (1984, 1985) were obtained. 

I am indebted to Dr M. K. Davey for introducing me to problems on coastal 
currents. 
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